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Abstract. We have used neutron polarisation analysis to measure, separately, the self and 
collective dynamics of a high-concentration lattice gas of deuterium in a single crystal of 
niobium. The measured incoherent scattering has been found to be well described by the 
dynamical model due to Rowe et a1 and the coherent scattering function is adequately 
described by a simple adaptation of this model, in which the quasielastic line width narrows 
with increases in the structure factor, S(Q).  Estimates of the diffusion coefficients and 
correlation factors appropriate to tracer and collective processes, together with the thermo- 
dynamic factor, have been determined from model fitting. Information on the interstitial 
ordering and the extent of the interactions has also been deduced and is in accordance with 
current Monte-Carlo predictions (Faux and Ross) within the bounds of the expected site 
blockingandavailability. We believe thisexperiment to be the first toemploy the polarisation 
analysis technique to study tracer and collective diffusion. 

1. Introduction 

Recent developments in the theory of collective motions of light interstitials in metal 
lattices (Sinha and Ross 1988) have inspired neutron scattering studies of the collective 
response of hydrogen (as determined from coherent quasielastic neutron scattering) as 
well as the self-correlation, which is exhibited in the incoherent scattering. The high- 
concentration NbD system of the present investigation, in which the interstitial diffusion 
process takes place over a non-Bravais lattice of sites of tetrahedral symmetry, also 
provides a possible starting model system for AgI-type superionic conductors. Deu- 
terium is used as the interstitial species, because for deuterium, the coherent thermal 
neutron scattering cross section, ocoh,  is comparable in magnitude with the incoherent 
scattering cross section, o,,, = 5.6 b, oinc = 2.0 b), in contrast with hydrogen where 
98% of the total scattering cross section is incoherent. 

There are two possible approaches to the problem of separating the incoherent and 
coherent components of the total scattering. The first was employed by Hempelmann et 
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Table 1. Relative neutron-nuclear interaction probabilities for spin flip and non-spin-Rip 
scattering. 

Incoherent 

Coherent Spin Isotope 

I ,  1 2  13 

1 113 1 
0 

t t  
? J  0 213 

a1 (1988) and involved a theoretical separation of the two parts by model fitting to 
the total scattering. The second approach, used in the present investigation, is an 
experimental separation by neutron polarisation analysis. Both techniques have their 
relative merits and disadvantages. The former requires a significant line broadening 
difference and good statistics (in order to separate reliably the two components by 
fitting procedures) and this in turn requires reliable models. The latter, for supermirror 
polariser and analyser elements, suffers from a rather large attenuation of the cold 
neutron flux. This is due to the inevitable collimation imposed by these components and 
the transmission generally decreases as the neutron energy increases for a given beam 
collimation. A typical value is around 30% (Scharpf 1989b) at the incident energy of the 
present investigation. Furthermore, the count rate is reduced even further by the fact 
that only one spin state is measured at any given time and the ‘effective transmission’ 
over the course of the experiment is thus nearer 15%. Polarisation analysis also suffers 
from a more complicated data reduction and multiple-scattering correction, but, 
however, has the advantage of giving an entirely unambiguous separation of any com- 
bination of coherent and incoherent line broadenings. The scattered spin state prob- 
abilities can be predicted by quantum mechanics and are summarised in table 1 for the 
present case of zero nuclear polarisation. From table 1, it can be seen that, for single 
isotope scattering and in the absence of multiple scattering, the neutrons scattered with 
spin flip originate entirely from incoherent events and that if one half of this spectrum is 
subtracted from the non-spin-flip component, we are left with events only from the 
coherent response. The spin flip scattering is then renormalised by a factor of 3 to obtain 
the incoherent part in the correct proportion. 

2. Theory 

A development of the Chudley-Elliott model (Chudley and Elliott 1961) to deal with 
nearest-neighbour jump diffusion on the tetrahedral symmetry interstitial lattice in a 
BCC host lattice was proposed by Rowe et a1 (1971). In the tetrahedral symmetry there 
are six sites per unit cell which are inequivalent with respect to the spatial distribution 
of nearest-neighbour jump vectors. When calculating the real space probability rate 
equations for nearest-neighbour jumps, the jump vector is, in general, labelled by three 
indices; two to label the origin and target site local symmetries (i andjrespectively) and 
one to label sites of a given local symmetry j which are adjacent to the origin site. For 
the tetrahedral symmetry, however, the third label may be excluded since the four 
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nearest-neighbour sites always have a different local symmetry. The nearest-neighbour 
jump process (assuming equal jump rates from each type of site) for the tetrahedral 
interstitial lattice is then described by six coupled rate equations of the kind 

where r is a vector to some fixed origin in an interstitial lattice unit cell, di is a vector 
linking r with site i in the unit cell and Zii is the vector linking site i with an adjacent site 
j .  The sum is over all sites j which are nearest neighbours to site i. The probability of 
finding an atom at any site i in the unit cell at r for a starting point m (which may be 
outside the unit cell) and at time t is  just the sum of the occupation probabilities at time 
t for each site in the unit cell given that the particle started at site m: 

~ ( r  + d ,  , t) .  ~ ( r ,  t)  = 
I 

The self-correlation function for the unit cell at r,  Gs(r, t ) ,  is the probability of finding 
an atom in the unit cell at r a t  time t given that it was at the origin, m ,  at t = 0, averaged 
over all the possible starting points, m ,  of the atom and is therefore given by 

subject to the initial conditions: 
P(r + d , ,  0 )  = 6(r)  i = m  

= O  i # m. 
The factor 4 in the expression for the self-correlation function implies equal occupation 
probabilities for each type of site which is only truly valid in the non-interacting case or 
low-concentration limit, The behaviour in reciprocal space is obtained by solving the 
rate equations under Fourier transform, which yields a 6 x 6 matrix eigenvalue problem 
of the form 

where Ais the dynamical matrix, {Z,} ( j  = 1,6) is the set of solution eigenvectors and A, are 
the corresponding eigenvalues. In a general crystal direction, this gives the incoherent 
scattering function as a sum of six components, which are Lorentzians in energy transfer 
in the absence of correlations, thus: 

AI, = Ail, (1) 

where e-2w is the Debye-Waller factor, t is the charcteristic time between jumps (or 
residence time) of the interstitial and W, are the Lorentzian weights. For equal site 
energies in the tetrahedral system, these are given by 

(3) k *  k wk=Gzz( f f i )  f f ~  

1 1  

1 

where a: is the ith component of the kth solution vector Z, and ' represents the complex 
conjugate. 

For a deuterium-to-metal (D/M) concentration, x ,  the average residence time . (X )  

of a given deuterium atom is given by 

and we define an effective residence time, teff, such that 

where f, is the tracer correlation factor, V is the effective vacancy concentration (or 

t ( X >  = to/V(x)  (4) 

Teff = Z(X>/ft(X) ( 5 )  



82 J C Cook et a1 

target site availability factor) and zo is the residence time in the low-concentration limit 
at the same temperature. ft  describes the enhanced probability of a return jump over 
forward jumps at finite concentration, given that site blocking exists. In generalf, will be 
a function of time in that the first jump in an examined sequence is uncorrelated, whereas 
the second and subsequent jumps are correlated. Thus as U + m ,  ft + 1 and as U + 0, 
ft-,ft(w) < 1 and the lineshape is no longer precisely Lorentzian in energy transfer 
(Ross and Wilson 1978, Faux and Ross 1987b). In the present investigation, the time 
and Q-dependence of the correlation factor are not introduced explicitly and so reif 
incorporates the average correlation effect. For simple site blocking (no double occu- 
pancy), V is simply equal to the vacancy concentration (1 - b). However, for more 
extensive site exclusion, this is no longer true. Monte-Carlo calculations of V(x)  for 
no double occupancy, and blocking to the first, second and third nearest interstitial 
neighbours for the BCC tetrahedral lattice have been performed (Faux and Ross 1987a), 
but the case for a real (soft) potential has not been worked out. 

In a recent publication (Sinha and Ross 1988), a formalism has been developed for 
the coherent scattering function of a collection of diffusing interstitials which mutually 
interact. This has been done on the basis of a mean-field calculation of the particle 
density response function. This is analogous to the random-phase approximation (RPA) 
treatment of the system of interacting electrons examined by Hayashi and Shimizu 
(1969), where 

and the zero interaction response function is given by 

If equation (7) is applied to the Rowe et a1 formalism we are left with an expression in 
matrix form for xo given by 

where rkk,(Q, w )  is an element of the broadening matrix A in equation (1) and '- 1' now 
implies the inverse of the matrix. Mutual interactions are introduced into the response 
function via the appropriate potential matrix linking nearest-neighbour sites k and k' , 
so that, ignoring phonon coupling, the response function becomes 

where V,,,(Q) is the Fourier transform of V,,,(r>. The coherent scattering function, 
Scoh(Q, U ) ,  can then also be expressed as a sum of six Lorentzians, where the widths of 
each component are 'narrowed' by a partial structure factor, Skk'(Q). That is, the 
coherent line width is proportional to the incoherent line width, divided by Skk'(Q) which 
is related to V,,,(Q) by 

For spherical symmetry Skk'(Q) becomes S ( Q ) ,  the total structure factor, and it is in this 
approximation that the coherent scattering function has been fitted. The coherent 
scattering function may then be expressed (in a non-factorised form for clarity), as 

xkk'(Q, 0) = xik'(Q, 0>/[1 + Vw(Q)xF'(Q, 011 (9) 

Skk'(Q) = x(1 - x )  e-2W/(1 + x(1 - x)Vkk'(Q)/kT). (10) 

where, in analogy with the incoherent case, t k f f  incorporates the average mobility 
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correlation effect, i.e. 

wheref, is the mobility correlation factor. 
In the low-Q limit, both the incoherent and coherent scattering laws reduce to single 

Lorentzians which intrinsically describe the long spatial and time ranges of the motion. 
In these limits the correlation factors have therefore approached their asymptotic values 
fort- x and the macroscopic averaged behaviour is observed. The scattering functions 
in (2) and ( l l ) ,  at low Q, then become 

TEff = T ” / f m  (12) 

where D, and D, are the tracer and chemical diffusion coefficients respectively. D, gives 
the macroscopic diffusion rate of the individual particle and D, gives the corresponding 
relaxation rate of density fluctuations which are caused by interparticle interactions. 
These diffusion coefficients can be expressed in terms of the correlation factors, f ,  and 
the site availability, V ,  as follows: 

where Do is the diffusion coefficient approximate to zero interstitial concentration and 
y ( Q  -s, 0) is the thermodynamic factor which, for a system exhibitingonlyconcentration- 
concentration fluctuations, is also the reciprocal of S(O),  the structure factor at zero 
wave vector transfer. (The influence of elastic stresses is discussed later in this paper.) 
The ratio of D, to D, is then given as 

where HR is commonly referred to as Haven’s ratio. 

3. Experimental details and measurements 

In order to apply these ideas, we used the diffuse scattering spectrometer D7 at the 
Institut Laue-Langevin, Grenoble, in the configuration for polarisation analysis with 
time-of-flight (TOF) energy analysis. The TOF pulse was produced by a four-slit disc 
chopper at 9000 rpm. This had advantages over the pseudostatistical chopper option in 
that it gave a much smaller background, thus enabling the scattering in the wings of the 
quasielastic peak to be determined with greater accuracy. An energy resolution ranging 
between 96 and 115 peV over the detector bank, together with a TOF channel width of 
19 ,us, were found to be suitable to resolve well the line broadenings expected at 600 K. 
The incident neutron energy of 3.52 meV was selected using a graphite monochromator. 
The monochromatic beam was then polarised using a supermirror polariser before 
passing through a ‘flipper’, a coil device which flips the neutron spin when switched on 
and leaves it in its original spin state if switched off. Beyond the flipper, the beam was 
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passed through the disc chopper and then through a slit system situated in front of the 
sample table to define the beam width on the sample. The scattered neutrons were then 
detected in 3He counters, arranged in four banks, each of variable angle. For the spin 
analysis, supermirror analysers (similar to the polariser), were positioned in front of the 
detectors and adjusted for angle in the horizontal plane for maximum transmission. 
Details of the general properties and performance of these supermirror polarising 
elements can be found in Scharpf (1989a, b). The analysers were arranged so as to accept 
only those neutrons which had the same spin direction as those in the incident beam. In 
other words, in the ideal case, only the non-spin-flipped scattered neutrons would be 
detected with the flipper off and with the flipper on, only the neutrons which had 
undergone a spin flip would be detected. The instrument ran alternately with flipper on 
and off and with an interval determined by a preset incident monitor count until the 
required number of counts was achieved. 

In the present investigation, we have used deuterium to an interstitial concentration 
of 70% D : M in a single crystal of niobium, which, after removal of the surface oxide 
layer, was palladium coated in order to catalyse the deuterium chemisorption at the 
surface. The crystal was cylindrical and of approximately 14 mm diameter which, at this 
concentration, gave a predicted 17% scattering for a uniform incident neutron flux 
normal to the crystal axis. The container was made of a high melting point aluminium 
alloy, having a wall thickness of about 0.5 mm and a bore just large enough to accept 
the crystal (allowing for its lattice expansion when loaded with deuterium). In this way 
the scattering from the gas outside of the crystal could be minimised. The sample can 
itself was passed between the windings of furnace. The deuterium loading was done in 
situ in order to ensure that the deuterium-loaded sample remained at a temperature 
above its a-/3 phase transition. This avoided the inevitable generation of dislocation 
networks in the crystal which occurs subsequent to such phase changes. The unloaded 
crystal was therefore raised to 600 K (well into the single a-phase region) under a high 
vacuum before the sample was exposed to any deuterium pressure. At this temperature 
and for 70% deuterium, the equilibrium pressure is around 0.1 bar. However, because 
of the slow deuterium uptake, the crystal was initially exposed to about 2 bar deuterium 
pressure (within the yield limits of the can) and for a controlled period to speed up the 
rate of chemisorption. In addition to using volumetric calculations, the quantitative 
uptake of the crystal was monitored by measuring the sample transmission as a function 
of time. The high deuterium concentration provided the large Q-dependent variation in 
structure factor, S( Q), which is required to make the theoretically predicted narrowing 
behaviour of the coherent quasielastic line sufficiently pronounced. Figure 1 shows the 
Ewald construction for the locus of the elastic scattering. This locus was chosen to 
approach the superlattice peak at [2 ,1 ,1]  where the structure factor, and therefore the 
narrowing of the coherent peak, might be expected to be maximised. 

Before performing any sample scattering runs, the flipping ratio, R ,  was measured 
using a fused quartz sample (see Scharpf 1985) which scatters very diffusely and without 
spin flip. The flipping ratio is a measure of the efficiency of the whole system with respect 
to propagation of the correct neutron spin and it  is affected by the polarising efficiency 
of the polariser and analyser, the flipper efficiency and the depolarisation of the beam 
in the intervening sections. The depolarisation was minimised by the use of guide fields 
in the incident and scattered beams and the avoidance of magnetic materials in the 
sample environment. R is measured simply as the ratio of the detected intensity from 
the non-flipping sample with the flipper off to that with the flipper on and, ideally, this 
should be infinite. For this experiment, R was about 16. That is, we could expect that, 
on average, 1 in 16 neutrons would be transmitted through the system with the wrong 
spin. 
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Using an incident wavelength of 4.82 A and a Be filter to reduce the A / 2  and higher- 
order monochromator reflections, the scattering runs may be summarised as follows: 

Quartz ( t  I', f 4) 
Vanadium spiral (T 1 
Empty can (T) 
Cd 

Nb 
(T, t t ,  f .1> 
(T, t f ,  t J )  

NbD0.7 (T, f T 3 t  .1> 
where T 4 and t f are the scattering cases with the flipper on and off respectively and 
with polarisation analysers in front of the detectors and T (total) denotes the case where 
the analysers were removed and thus no distinction between the scattered spin state was 
made. The Nb. Cd and empty can runs were necessary for the sample and vanadium 
background corrections and the quartz run, which was also corrected for background, 
was made in order to determine the flipping ratio, as mentioned previously. 

4. Data correction and analysis 

The data reduction was performed on the time-of-flight data and a brief summary is 
given here. A fuller account of data treatment for polarisation analysis experiments, 
with particular reference to the D7 instrument, is given by Scharpf (1985). For brevity, 
we use the symbol I to denote intensities normalised to the incident beam monitor (Ml) .  
If a correction is repeated for the cases t t , t 1 , and T, the general superscript (Y 

will be used. Monitor 2 (the beam stop monitor) is denoted by M2. The background 
corrections were calculated from the Nb and Cd runs using the following approximation: 

f & d  = YD& + (1 - Y D )  - I&, 
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T =  600 K 

)r 

t 
c a + 
I 

-1 0 1 -1 0 1 

Energy tmnsfer (meVI  

Figure 2. The separated coherent and incoherent parts of the total scattering around the 
elastic position as a function of detector angle 

where YD is the sample transmission factor, measured as, 

Y D  2 (Zk& -zy;) / (zy;  - z g ) .  

ra, = I&) - &. 
The deuterium scattering was then obtained as, 

The I: and ZJ ' intensities were then corrected for flipping ratio by subtracting l / R  
of the opposite spin component from each. From these corrected intensities, the analyser 
transmission as a function of energy transfer was determined by comparing the sum of 

t the Zi ' and the I ,  intensity, the difference being due to the 
analyser transmission factor, YA(w), i .e.  

intensities with the 

z: J- (0) + z: + (U) = Y " ( w ) T L ( w ) .  

r y  ̂1 r', - (1 - Y")Z& - Y"l;f,,,, 

YV = ( r y  - z y ~ ) / ( z g $ "  - I:;). 

The vanadium run was corrected for background in an analogous way, 

where Yv is given by, 

Finally the I: ' and I $  intensities were corrected for analyser transmission and nor- 
malised to the vanadium result which, of course, required no analyser transmission 
correction. The separated incoherent and coherent components of the scattering are 
shown in figure 2. 

The multiple-scattering correction was performed using a version of the Harwell 
Monte-Carlo program DISCUS (Johnson 1974), which was modified to calculate. sep- 
arately, the corrections for the t 4 and T scatterings. This required input of both 
the coherent and incoherent scattering functions which were in fact calculated in separate 
subroutines. Since multiply-scattered neutrons can have passed through a variety of 
points in reciprocal space and energy transfer, the following procedure was adopted to 
approximate the scattering functions over a wide range of Q and w :  the initial incoherent 
spectra were fitted individually to obtain good approximations to the quasielastic half 
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widths, rrnc. These spectra were then fitted simultaneously to the six-component 
Lorentzian model of equation (2), where the effective residence time, teff, was one of 
the refined parameters. The individual broadenings, r, were finally fitted to the following 
model in Q using the value of 7eff from the simultaneous fit: 

r(Q) = fi/t,,(1 - sin(Ql)/(Ql>>. (18) 
The fit was made by refining only an amplitude factor. The nearest-neighbour jump 
distance, 1, was kept constant on the grounds that it was well known. This treatment of 
the half widths is equivalent to a liquid or polycrystalline approximation, thus giving a 
kind of spatial average. For the coherent scattering, a simultaneous fit of the six- 
Lorentzian model of equation (1 1) was made in order to determine the S( Q) values and, 
for the purposes of the multiple-scattering program, the coherent scattering function 
widths were calculated as 

The S(Q)s  used in the calculation of the total scattering cross section, os, within the 
DISCUS program were, however, determined using the values of the Cowley short- 
range order parameters obtained by Hempelmann et a1 (1988) for a deuterium con- 
centration of 0.72 and T = 581 K in a polycrystalline niobium sample. This was done in 
order to make the following simplifying approximation: 

where SP( Q) is the polycrystalline S( Q ) .  
The t .1 and t t data were corrected to fourth-order scattering and three self- 

consistent iterations of the above process resulted in a satisfactory convergence of the 
correction factors. 

The vanadium data were found to be well fitted by a Gaussian in energy for each 
detector and the resolution function was calculated from the fit parameters. The centres 
were defined as zero for each. The corrected incoherent spectra were fitted both indi- 
vidually and simultaneously, however, those spectra having a line broadening of less 
than 10% of the resolution width were excluded from the fits. This was because of the 
risk of introducing a large numerical uncertainty in the line broadenings extracted from 
fits where there was a gross mismatch between the quasielastic broadening and the width 
of the resolution function. This error arises in the function convolution stage. The 
simultaneous fits enabled the tying together of parameters expected to be common to 
each spectrum, thus constraining the fitting process much more strictly than for the 
individual fits. The variable parameters used for fitting to the incoherent data were: a 
flat background, a sloping background (which was linear in energy transfer), a Q2- 
dependent inelastic background (for simultaneous spectrum fits), an overall intensity 
factor, an effective residence time and a peak centre position in energy transfer. The 
peak centres were determined from the individual spectrum fits. These positions were 
then used as non-variable input for the simultaneous fit and acted as spectrum centre 
shifts, while a common centre position was refined. A similar procedure was adopted 
for the fitting of the coherent data but this time the line widths were narrowed by the 
values of S ( Q )  and the residence time parameter was to. It was necessary, for some 
spectra, to exclude certain areas in o where there were evidently overlapping inelastic 
features and some spectra were omitted completely. In view of the high degree of 
covariance between the intensity and the line width, combined with the low statistics of 
the coherent scattering at low Q, the following 'smoothing' function was fitted to the 
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a 

individually fitted S( Q) values: 
sin( Qr,) 

S ( Q )  = (1 - C) C, Ziai - 
I Qr, 

Figure 3. The coherent structure factor as a func- 
tion of Q. The discrete points are the values 
derived from the individual spectrum fits and the 
curve represents the values of the best fit of 
expression (19) to these values multiplied by the 
common refinement parameter which gave an 
optimal simultaneous spectrum fit of these 
smoothed S(Q) values. 

where c = G ,  the deuterium concentration in units of atoms per interstitial site, ri is the 
distance to the ith nearest-neighbour site and Zi is the coordination number. This is 
equivalent to the polycrystalline expression for S( Q) using the Cowley short-range- 
order formalism. However, the parameters a; here cannot have any simple physical 
significance attached to them as for the polycrystalline case. For this fit, a sum over the 
first four terms (i = 0 to 3), was found to be sufficient to provide agood overall description 
of the S( Q) data and two approaches were adopted in order to identify systematic errors 
arising from this process. Firstly, expression (19) was fitted to the values of S( Q) obtained 
from the individual coherent spectrum fits. The resulting values of the fitted function at 
each Q were introduced as values of S ( Q )  in the simultaneous spectrum fit and refined 
by a common multiplying parameter. Figure 3 shows both the values of S ( Q )  from the 
individual spectrum fits together with the refined function values from the simultaneous 
fit (points on the curve). Secondly, S( Q) was calculated according to (19) in the spectrum 
fit itself and al-a3 were refined. The refined values of S ( Q )  obtained from the former 
method were re-introduced as fixed parameters into the individual spectrum fits in order 
to determine the'final values of the residence times for the individual coherent spectra. 
In all cases, the errors on the parameters were calculated from their gradients around 
their fit values. We note that S ( Q )  changes by more than an order of magnitude in the 
measured scattering, thus providing a good test of equation (11). 

5. Results 

Figure 2 shows the separated incoherent and coherent scattering around the elastic 
position which exhibit the expected qualitative features: the incoherent peak narrows 
as Q + 0 and the diffuse coherent quasielastic peak is low in intensity and broad at low 
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0.5 1.0 1.5 2.0 

Figure4. The individuallyand simultaneously fitted residence times from: (a), the incoherent 
scattering: ( b ) ,  the coherent scattering. (The broken lines indicate the error level of the 
simultaneous fits.) 

Q and peaks in intensity around the superlattice peak position where a narrowing process 
is in evidence. 

Figure 4 shows the individually and simultaneously fitted t-values for the incoherent 
and coherent scattering where the errors in the simultaneous fit parameters are repre- 
sented by the broken lines. For the incoherent case teff is the plotted parameter, and 
for the coherent case the parameter is to. The horizontal straight lines represent the 
simultaneously fitted t-values. Figure 5 shows the corrected incoherent and coherent 

Figure 5. The corrected data in Q and w (left) and the corresponding simultaneous fit (right) 
for the incoherent and the coherent spectra. 
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Figure6. Haven's ratio determined from the indi- 
vidual and simultaneous spectrum fits as a func- 
tion of Q. (The broken lines indicate the error 
estimate derived from the simultaneously fitted 

i I 

I 

1 . 5  2.0 

11 i 
1 .o 

P cX-'r parameters.) 

data (interpolated onto a common grid in energy) with their corresponding spectrum 
fits. Truncations in these plots are due either to the termination of a particular data set 
or where an inelastic feature has been excluded. In these regions, the intensity is set to 
zero. The data and the corresponding fit are shown on the same vertical and horizontal 
scales for ease of comparison. 

By comparing equations (2) and (11) with (13) and (14) and using equation (17), we 
may deduce that, in the present formalism, 

[x(l - ~) tef f l /S(Q) t 'o~~ = Y(Q)/HR (20) 

(21) 

and inserting y( Q )  = 1/S( Q ) ,  this gives Haven's ratio as 
H - R - 0 /(x(l - x)teff). 

This also implies that the effective coherent residence time, t c , h  = to/x(l - x ) ,  is simply 
related to the effective incoherent residence time by 

Figure 6 shows the values of H R  calculated from expression (22) using the individually 
and simultaneously fitted residence times for the incoherent and coherent dynamics. The 
horizontal straight line is the value of 0.49 * 0.03, obtained by using the simultaneously 
fitted residence times, and this is in agreement with the average of the value of H,, 
( H R )  = 0.49 ? 0.08, given by inserting the individually fitted residence times. Again the 
broken lines represent the error level derived from the errors of the simultaneous fit 
parameters. 

The two methods employed for fitting S ( Q )  did indeed show a systematic error in 
determining a reliable value for y(0)  (= 1/S(0)) giving y(0) = 5.9 and 7.0 in the two 
cases. We can therefore expect the systematic error in the value of the thermodynamic 
factor to be at least of the order of 20%. 

r c o h  = H R t m c .  (22) 

Now, if D, is calculated as 

D, = f t 1 2 / 6 t ( x )  = 12/6teff = a2/48reff (23) 
we arrive at a value for the tracer diffusion coefficient of (1.49 +- 0.05) X cm2 s-'. 
This compares with a value of (1.21 2 0.09) X cm2 s-' obtained by fitting equation 
(13) to the low-Q spectra (Q < 0.9 A-'). Now usingequation (17) and the value for HR, 
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and taking the mean value of y(0) of 6.45, we predict a chemical diffusion coefficient, 
D,, of (1.96 & 0.44) x cm2 s-’. Fitting expression (14) to the coherent data in the 
low-QapproximationwithacommonS(Q)intensityfactorgave D, = (1.0 If: 0.4) x 
cm2 s-l, a quite different value, and a characteristic S(Q) of 0.21 k 0.03, close to 
x(1 - x ) ,  the Laue intensity. It must be noted, however, that the statistics at low Q in 
the coherent scattering are relatively poor. Also the constant-intensity assumption is 
not completely valid for the present data since S(Q), even at the lowest Q-values, shows 
evidence of structure. 

6. Discussion 

A study of the fitted residence times shown in figure 4 seems, within the accuracy of the 
present experiment, to show little convincing evidence of any Q-dependence. The 
constant-t model used for the present analysis is therefore a reasonable approximation, 
even given that there is a possible o-dependence of t. Hitherto unpublished Monte- 
Carlo calculations (Faux 1986) showing the time dependence of f t  for the case of simple 
site blocking (no double occupancy) in a simulation of the presently studied system, 
show that most of the change in the value of f t  takes place over about four or five 
attempted jumps per interstitial. This corresponds to an o range of, say, 1/5t0 to 2.  

However, the site blocking is expected to extend to several nearest-neighbour distances 
and we might expect that the real time for the interstitial to make a series of correlated 
hops becomes longer. This means that the lineshape should still be changing in a 
significant way even closer to the peak centre than for the simple blocking system. If we 
then examine the quasielastic peak out to about 5 HWHM in energy transfer (-5/t0), we 
are covering a time range in which the change in value of the correlation factor is expected 
to be important. It must be concluded, therefore, that the statistics of the present data 
at the current energy resolution are not sufficient to identify, with any certainty, a 
deviation of the lineshape from a Lorentzian in energy due to time-dependent corre- 
lations. This might also indicate that the Q-dependence of this time dependence is small, 
since the data is adequately described over the whole Q-range by a single residence time 
parameter. The relatively large errors that occur, particularly for the individually fitted 
incoherent and coherent residence times (and hence for Haven’s ratio), are a reflection 
on the statistics of the data combined with a comparatively small number of degrees of 
freedom for some of the individual fits. For the coherent data in particular, the minimum 
for some of the parameters was rather flat. By fixing S(Q) and the background at the 
simultaneous fit values in the individual fits, some degree of ‘fixing’ was thereby imposed 
on the residence time parameter. This is because S(Q) and t, although not having 
precisely the same functional behaviour in the coherent scattering function, have none- 
theless a large covariance. This meant that the individually fitted t-values had a tendency 
to stay close to the simultaneous fit value and that the spread of these values was more 
characteristic of the error on the simultaneous fit. The restriction on t due to the fixing 
of S(Q) has therefore had the effect of giving a statistical spread of the coherent residence 
times somewhat smaller than the size of the error bars and this is also reflected in the 
values of Haven’s ratio that were calculated from them. 

cm2 
s-’ is comparable with, but greater than, what we would expect from an extrapolation, 
in T and x, of the results obtained by Hempelmann et a1 (1988) which gives a value 
around 1.1 x lop5 cm2 s-’ for x = 0.7 and T = 600 K. However, the chemical diffusion 
coefficient obtained in the present analyisis of (1.96 ? 0.44) X lo-‘ cmz s-l is much 

The value obtained for the tracer diffusion coefficient of (1.49 L 0.05) x 
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larger, the corresponding extrapolation here giving an estimated value of D, of around 
7.0 x cm2 s-l, This discrepancy might be attributed, in part, to a systematic error 
which can occur in the fitting process whereby variable parameters such as S(Q) and t 
have a certain freedom to exchange value if the systematic error thus introduced is 
comparable with, or less than, the statistical error of the data. That is, equivalently good 
fits in x 2  can be achieved for a range of S ( Q )  values and the corresponding z-values. 
However, this difference could also be due to a change of the physical processes con- 
tributing to the particle density response with changes in Q. This could be readily verified 
if reliable values of S( Q) were available from a fit-independent method such as spectrum 
integration, for example, where a possible Q-dependence of the residence time could 
be realistically investigated. The value of D, extrapolated from the data of Hempelmann 
et a1 is, in fact, much closer to the value of (1.0 * 0.4) X cm2 s-’ obtained in the 
present investigation from the spectrum fit at low Q, and therefore we can say that the 
present experiment agrees quite well at low Q, where their measurements were confined. 

The present neutron scattering results show, once again, a significant discrepancy in 
the values of the chemical diffusion coefficient with respect to those obtained from 
Gorsky effect measurements (the neutron results giving consistently higher values), 
This difference is only important where spinodal decomposition to the &‘-phase and the 
formation of a superlattice can occur. At higher concentrations ( x  - l), however, B- 
phase precipitation is preferred because the effective hard-sphere potentials touch. In 
this case, clustering is no longer important and coherency stresses do not appear. In a 
recent communication by Wipf et al(l989), it has been demonstrated numerically, using 
a theory due to Wagner and Horner (1974) and Wagner (1978), that the discrepancy in 
the neutron scattering and Gorsky effect data for x - 0.5 can indeed be explained in 
terms of coherency stresses. Coherency stresses have the effect of increasing the elastic 
energy over the comparatively short spatial ranges, measured by most neutron scattering 
experiments, where the short-wavelength ‘bulk-mode’ density fluctuations are con- 
centrated. In Gorsky effect measurements, on the other hand, the lower energy ‘macro- 
scopic’ modes (which have wavelengths comparable with the size of the crystal) are 
probed and on these length scales the coherency stresses are much lower or even zero. 
They therefore propose that the neutron studies, which are sensitive to the shorter 
wavelength modes, measure a fundamentally different diffusion coefficient and thermo- 
dynamic factor which they term D b u l k  andfbuik, respectively. Using their notation these 
may be written as 

Dbulk = Dchem[l + p ( E l  - Ebulk)/kBTftherm] 
and 

fbulk = ftherm[l + p ( E l  - Ebulk)/kB Tftherm] 

where E l  is the energy of the macroscopic mode, E b u l k  is the energy of the bulk mode 
and Dchem andfthe,, represent the ‘true’ values of the chemical diffusion coefficient and 
thermodynamic factor, respectively, obtained from Gorsky effect measurements. It has 
been shown by Wipf et a1 that the introduction of the right-hand term in the above 
expressions for the neutron data analysis does indeed account for the difference between 
the existing Gorsky effect data and the specific results of Hempelmann et al. However, 
we might well expect this term to be Q-dependent, since the bulk mode energy spectrum 
should change on different length scales. It might therefore be expected that as Q is 
increased, the neutron results would increasingly diverge from the Gorsky effect data 
as the higher energy bulk modes are probed and that as Q + 0, they could converge to 
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the same value. This is a point which is not mentioned by Wipf et al, although most of 
the Q-dependence will probably occur over spatial distances not much smaller than the 
size of the crystal, since the stress relaxation lies in the ability of the free boundaries to 
distort. Comparison of the present neutron experiment with that of Hempelmann et a1 
does seem to indicate a process of this kind, in that the fits characterised by higher Q- 
values give a generally increased chemical diffusion coefficient. This favours the proposal 
that the discrepancy in the results of the neutron experiments could be attributed to a 
&-dependent change of physical processes in the particle density response. 

The values of the thermodynamic factor for both experiments are very similar. 
However, a large discrepancy lies in the value for H R  which Hempelmann et a1 have 
reported to be 0.98 for x = 0.72 and T = 581 K. This, taken by itself, would give a 
corresponding discrepancy in the value of the chemical diffusion coefficient for the two 
experiments by nearly a factor of two if derived from expression (17) for the same tracer 
diffusion coefficient. Now, if we use the Monte Carlo calculations off, andf, performed 
by Faux and Ross (1987a) we predict the following values of H R  for the second and third 
nearest-neighbour 'hard-sphere' tetrahedral site blocking and for x = 0.7 

H R  = 0.857 

H R  = 0.613. 

Here our value of around 0.49 would indicate a highly correlated motion with a blocking 
radius greater than that of the third nearest neighbour. However, if the value of the 
thermodynamic factor measured is in fact fbulk ,  then the values of H R  obtained from 
equation (20), for example, would tend to be underestimated. One possible solution to 
this problem could be to introduce a bulk mode potential into the response function in 
expression (9). 

Using equations (4), ( 5 )  and (12), we can relate rgff and reif and we have 

rbff  = ( f t / f m ) V Z e f f  = H R V t e f f .  

If we now use the values of V from the Monte-Carlo calculations of Faux and Ross 
mentioned above, we predict the following values of r6ff for the two site blocking cases 

rbff(*) = 8.53 x 10-13 s 

~ b ~ ~ ( ~ )  = 1.94 x s 

The value of riff derived from the present coherent fit (rb" = (1.68 I 0.07) x s) 
lies outside these limits and indicates an effective site blocking radius extending beyond 
the third nearest neighbour. This is in general agreement with the extent of blocking 
predicted from the measured values of Haven's ratio. 

The magnitude of the correlation effect that we are seeing in this experiment is 
perhaps not totally surprising since the maximum theoretical concentration for a random 
distribution of interstitials on the tetrahedral symmetry lattice, with third nearest- 
neighbour site blocking is around x = 0.8 and so the effective vacancy concentration is 
quite small. In all, even using this rather simplistic hard-sphere potential, we would 
conclude that, at a concentration of x = 0.7, we are seeing a characteristic site blocking 
of greater than, but in the region of, three nearest-neighbour shells (that is 2 2 . 1  A in 
the expanded niobium lattice). This is therefore not in disagreement with the value of 
2.1 A proposed by Westlake (1980) as the minimum separation of hydrogen in metals 
based on electron band calculations. 

In conclusion, we have succeeded in separating, experimentally, the two components 
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of the quasielastic scattering of a high concentration deuterium lattice gas in niobium to 
a high wave vector transfer. We have shown that the approximations of neglecting 
time-dependent correlations and vector interactions has not markedly hindered the 
explanation of the data, in terms of simplified models, over a remarkably wide range in 
Q. We would note that this is, to the best of our knowledge, the first report of the use of 
polarisation analysis to separate the tracer and collective diffusion properties of a 
quasielastic scattering sample. With improved neutron sources and the optimisation of 
the instrumentation, it is likely that this technique will become more important in the 
future. 
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